
AD-A233 989

A Software Package for Unconstrained Optimization
Using Tensor Methods

Technical Report

Ta-Tung Chow, Elizabeth Eskow, and Robert B. Schnabcl

December 1990

U.S. Army Research Office

Grant Number DAAL 03-88-K-0086

Department of Computer Science
Campus Box 430

University of Colorado,
Boulder, Colorado, 80309 USA

Approved for Public Release;
Distribution Unlimited

Technical Reporl Number
CU-CS-491-90

Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author and do not necessarily reflect the views of the
National Science Foundation.

The views, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

~t

'i ...

A Software Package for Unconstrained Optimization using Tensor Methods

Abstract

This paper describes a software package for finding the unconstrained minimizer of a nonlinear

function of n variab';. Th . package is inLended for problems where n is not too large, say n < 100, so

that the cost of storing one n x n matrix, and factoring it at each iteration, is acceptable. The software

allows the user Lo choose between a recently developed "tensor method" for unconstrained optimization,

and an analogous standard method based upon a quadratic model. The tensor method bases each iteration

upon a specially constructed fourth order model of the objective function that is not significantly more

expensive to form, store, or solve than the standard quadratic model. In our experience, the tensor method

requires significantly fewer iterations and function evaluations to solve most unconstrained optimization

problems than standard methods based upon quadratic models, and also solves a somewhat wider range of

problems. For these reasons, it may be a useful addition to numerical software libraries.

-1-

1. Introduction

This paper describes a software package that implements the tensor method for unconstrained

optimization introduced in Schnabel and Chow [19891. The package solves the unconstrained minimiza-

tion problem

min f (x)": R n---)R,
xeR,

utilizing either analytic or finite difference gradients and Hessian matrices at each iteration. The software

allows the user to choose between a tensor method and an analogous standard method based upon a qua-

dratic model. It is intended for problems where the number of variables n is not too large, say n 100, so

that the cost of storing one nxn matrix and factoring it at each iteration is acceptable. It can be applied to

problems where n =1, but software designed specifically for one variable problems is likely to be prefer-

able.

The tensor method employed in the software bases each iteration upon a specially constructed

fourth order model of the objective function. This model interpolates the function value and gradient from

the previous iterate, as well as the current function value, gradient, and Hessian matrix. The model is con-

structed so that the storage it requires, and the arithmetic operations per iteration required to form and

solve it, are not significantly higher than for a standard second derivative method based upon a quadratic

model. In our experience, the tensor method requires significantly fewer iterations and function evalua-

tions to solve most unconstrained optimization problems than standard unconstrained optimization

methods based upon quadratic models, and also solves a somewhat wider range of problems. For these

, i it may be a useful addition to numerical software libraries.

The next section gives a very brief overview of the tensor mcthou; for intlr nformation, see

Schnabcl and Chow [19891. Section 3 gives an overview of the input, output, and important options pro-

vided by the software. In Section 4 we describe the user interface to the package, which includes both a

simplilied (default) and a longer calling sequence. Section 5 describes in detail all the possible input and

outpuit parameters for the package, and their effects. Section 6 mentions a few implementation details. In

.2-

Section 7 we summarize our experience using this package, which can be found in more detail in Chow

[1989].

2. Brief Overview of Tensor Method

Each iteration of the tensor meth,d is based upon a fourth order model of the objective function

f (x) around the current iterate x, that has the form

m(x+d) = f (xc) + Vf (g)T d + 1/2dTV2f (xc)d + -Tcd3 + 4 (2.1
-2-4V, d(2.1)

The tensor terms T, and V, are three and four dimensional objects, respectively, that are chosen so that

the model interpolates function and gradient information from previous iterates. Schnabel and Chow

[19S91 allowea the model to interpolate function and gradient values from more than one past iterate, but

their tests showed that there was no advantage to this in comparison to a tensor method that interpolates

only the function value and gradient from the most recent past iterate. In addition, the tensor method is

significantly simpler when only information from one past iterate is used. For these reasons, this software

package uses the version of the tensor method that only interpolates information from the most recent

previous iterate.

Schnabel and Chow [1989] derive a procedure for determining the smallest T, and Vc, in the Fro-

benius norm, that allow (2.1) to interpolate previous function and gradient values. In the case when only

one past iterate is used, they show that these T, and V, are rank-two and rank-one tensors, respectively.

In particular, the tensor model has the form

I rd,2(~, +0 S)4
m(x,+d) = f (x,) + Vf (xc)T d + /2dTV 2f (x,)d + (Sdc)2(bdc) + -2 (s-d4 (2.2)

,2-:. s' is the step from x, to the previous iterate xp, and b, ER" and oceR are uniquely determined by

:h I . n (xt ,)=f (xp) and Vim (xp)=Vf A,). [he cost of finding b, and a is n 2 (for the calcula-

tion s, V2 f (x,)s) + 0 (n) multiplications and additions, which is very small in comparison to the basic

0 (n 3) per iteration cost of the standard method. The additional storage required is just a few i -vectors,

-3-

for be, sc, and some intermediate quantities, which is very small compared to the n2/2 storage for

V2f (x,).

Near a minimizer, the step taken by the tensor method is to the minimizer of (2.2). Schnabel ana

Chow [1989] show that the problem of minimizing the fourth order model (2.2) can be reduced to the

problem of minimizing a fourth order polynomial in one variable, plus the minimization of a quadratic

function in n-I variables. The cost of this process is only 4n2 + 0 (n) multiplications and additions more

than the basic 0 (n3) of minimizing a quadratic model.

As in all noniinear optimization methods, it is also necessary to incorporate a procedure that allows

the method to converge from starting points that are far from the solution. Chow [1989] implemented

both a line search and a trust region methods for the tensor method. In his tests, the tensor method with a

trust region strategy was about 15% more efficient (in terms of iterations or function and derivative

evaluations) than the tensor method with a line search strategy, while the difference in robustness

between the two methods was indistinguishable. The line search tensor method was still about 25-35%

more efficient than either a standard line search or trust region method based upon the quadratic model.

In addition, the line search tensor method is much simpler to implement and to understand than the trust

region tensor method, and is appreciably faster on small, inexpensive problems where the complexity of

the code becomes the dominant cost. For these reasons, this software uses a line search method.

In the line search tensor method, if the tensor model has a minimizer and it is in a descent direction

from xT, then we search along the direction to the minimizer, using the backtracking line search algorithm

A6.3.1 from Dennis and Schnabel [19831. This line search starts with steplcngth one, and if the candidate

point ic, does not satisfy the condition

f (X,) < f (X,) + lO-4Vf (x,)T(x-x , (2.3)

it reduces ths s"?rlrmgth by some factor between 0. 1 and 0.5, and continues to do this until the first time

that tie candidate point satisfies (2.3). If we cannot use the tensor model for the reasons mentioned

above, or we are at the first iteration and there is no previous iterate, we base the step upon the standard

-4

quadratic model. We use the same line search, and calculate the search direction using the modified

Cholesky factorization of Schnabel and Eskow [1990]. The search direction is

-(V 2f(x:)+I ID I Il)-'Vf (x,), where D is the diagonal matrix added to the Hessian in the modified

Cholesky aecomposition, which results in D = 0 if V2f (x.) is safely positive definite.

When we can use the tensor model to find a potential next iterate, it turns out that we can find the

search direction based upon the quadratic model at little additional cost. For this reason, we always also

calculate the potential next iterate based upon the quadratic model, and then choose the point with the

lower function value as our next iterate. This strategy generally only costs 1 or 2 additional function

evaluations (and no extra derivative evaluations) per iteration, and has been found to appreciably improve

the efficiency of the algorithm.

A high level description of the tensor method is contained in Algorithm 2.1.

Algorithm 2.1 -- An Iteration of the Tensor Method Algorithm

Given current iterate x , f (x,), previous iterate x, ,f (x ,), Vf (xp):

1. Calculate Vf (x,) and decide whether to stop. If not:
2. Calculate V2f (x,).
3. Set s, = x,-xp, and calculate b, and ot in the tensor model (2.2) so the the tensor model interpolates

f (xp) and Vf (xp).
4. Calculate the the minimizer of the tensor model; if it has one, and the minimizer is in a descent direc-

tion dT from x,, then use the line search to calculate a potential acceptable next iterate X+T =
Xc +T dr.

5. Calculate the search direction d+N based upon the quadratic model, as described above (d+,v =
-(V 2f (xc)+l ID I ll)-Vf (xc), D >_0), and use the line search to calculate a potential acceptable
next iterate X± v = Xc +X,v .v.

6. I f (the tensor line search was conducted) and (f (x+T)f (x +V))
then set X+-X+T
else Set X+=X+N.

7. Set XP = Xc, xc=+.

--

3. Overview of the Software Package

The required input to the software is the number of variables n (N), a subroutine to evaluate the

function f (x) and its name (FCN), an initial approximation x0 to the solution x. (X), and the row dimen-

sion of the matrix in the users program that will contain the Hessian matri; 'NP). The user may also pro-

vide subroutines to evaluate Vf (x) and V-f (x), but these subroutines are optional. If they are not pro-

vided, the gradient and Hessian are approximated by finite differences. If subroutines to calculate ana-

lytic derivatives are provided, they are checked at the start of the algorithm against a finite difference

approximation to detect possible coding errors, unless the user chooses to disable this option (see

GRDFLG, HESFLG, Sec. 5).

Upon completion, the software produces its final iterate xf (XPLS), the value of the function f (xf)

(FPLS), the gradient g(xf) (GPLS), the Hessian H(xf) (H), and a flag specifying under which stopping

condition the algorithm was terminated (MSG). The stopping criteria used in this software are the same

as in the UNCMIN package of Schnabel, Koontz and Weiss [1985]. Informally, they are: (1) Vf (x+)zO;

(2) x+=x ; (3) the package could not satisfy (2.3) at the last iteration; (4) the iteration limit A as exceeded;

and (5) divergence is suspected. If any of these conditions is satisfied, the algorithm terminates. In our

experience, when the code stops due to Vf (x+)=O, it is almost always near a local minimizer. When it

stops because x+=x, it is usually near a solution; this tolerance should be set quite small, however, since

optimization algorithms sometimes take very small steps while still far from the -olution. When the algo-

rithm stops because the last iteration could not satisfy (2.2), it is often near a solution and cannot achieve

further accuracy due to finite precision arithmetic; this can be assessed by checking the size of the gra-

dient. The divergence test is meant to detect functions that are unbounded below; a very large maximum

step size is imposed in the line search, and if five consecutive steps of this size are taken, divergence is

suspected. A more precise delinition of these criteria and recommended values for the applicable tolcr-

ances (GRADTL, STEPTL, ITNLIM, STEPMX) are given in Sec. 5.

The user has the option to choose between the tensor nieL,,.d and a standard, quadratic model based

method. In our experience, the tensor method usually requires fewer iterations and function and derivative

evaluations than the standard method, but this may vary depending upon the problem. The choice is

based upon the input parameter METHOD; the default choice is the tensor method. As previously men-

tioned, for both the tensor and standard methods, a line search strategy is used.

The software can perform scaling of the variable space. If the user inputs a typical magnitude typx i

of each component of xi, then the performance of the package is equivalent to what would result from

redefining the independent variable x in the user's function with

X scaled - " X

1l/typx,,

and then running the package without scaling. In our experience, scaling is often beneficial when dif-

ferent components of x are expected to have widely differing magnitudes, i.e. differing by several orders

of magnitude, and may sometimes be necessary in order for the software to successfully solve such prob-

lems. The default is no scaling, i.e. each typxi = I. Scaling is controlled by the parameter TYPX.

The user can have the software print out information at each iteration, print out only the initial

iterate and the final result, or not print out anything. When MSG=0, the software will not print out any-

thing; this is often useful when the software is imbedded in other software. When MSG=1 (the default),

the software will print out the initial iterate xo, f (xo), and Vf (xo), the final iterate xf, f (xf), and

Vf (xf), the reason the algorithm was terminated, and the number of iterations taken. When MSG =2, the

software prints out this information and in addition, the values of x, f (x,), and Vf (x,) at each iteration.

The user can input an estimate of the number of accurate digits in the objective function f (x),

using the parameter NDIGIT. It is important to provide this information whenever the number of accu-

rate digits in f (x) is expected to be significantly fewer than the full double precision used by this pack-

ac. This may occur, for example, when f(x) is itself the result of an iterative procedure which returns in

-7.

answer where only some number of the leading digits are accurate, or if the routine forf (x) is written in

single precision. It is particularly important to supply this information v.,lien the function evaluation does

not have (nearly) full double precision accuracy and finite difference derivatives, either gradients or Hes-

sians, are being used.

4. Calling the Software Package

There are two ways to call the package. If the user wishes to override the default values of any

input parameters, or to supply routines to evaluate the gradient or Hessian, then the following sequence is

used

CALL DFAULT(N ,TYPX ,FSCALE ,GRADTL ,STEPTL ,ITNLIM ,STEPMX ,IPR AIETHOD,

GRDFLG ,HESFLG ,NDIGITMSG)

(code to override specific default parameters goes here)

CALL TENSOR (NR ,N X ,FCN ,GRD -ISN ,TYPX ,FSCALE ,GRADTL ,STEPTL ,ITNLIM ,STEPMX,

IPR IETHOD ,GRDFLG ,HESFLG ,NDIGITMSG XPLS ,FPL5 ,GPLS ,H ,TNNO,IVRK ,IWRK)

The routine DFAULT sets all input parameters to their default values, so that the user only needs to

specify those values that are desired to have different values than the defaults. For example, if the user

wishes to use all the default values except the iteration limit (setting it instead to 300), and wishes to sup-

ply analytic gradients, then the calling sequence would be

CALL DFAULT(N ,TYPX ,FSCALE ,GRADTL ,STEPTL JTNLIM ,STEPMX ,IPR X.!ETHOD,

GRDFLG ,HESFLG ,DIGITMSG)

ITNLIM =300

GRDFLG =1

CALL TENSOR (NR .N .X FCV ,GRD JI-SN ,TYPX ,FSCALE ,GRADTL ,STEPTL ,ITVLIM ,STEPMX ,

IPR ,ETIIOD ,GRDFLG ,HESFLG ,NDIGIT AISG ,PL5 ,FPLS ,GPL ,H ,ITVNO ,tVf<K ,IlVRK)

The name of the routine for evaluating analytic gradients would be given where the parameter GRD is

shown, and this routine would be supplied by the user. In addition, the values of NR (the row dimension

-8-

of users matrix that will contain the Hessian), N and X would be supplied by the user, and the user

would provide a routine to evaluate the objective function f (x) and supply its name in FCN. WRK and

IWRK are an NR x8 double precision array and an NR element integer vector, respectively, that are used

as work arrays by the package. These arrays must be declared in the user's calling program, but may be

given different names than WIRK and !WRK.

If the user wishes to use all the default values of the parameters and evaluate derivatives by finite

differences, then there is a simpler way to cal the package. It is

CALL TE,'SRD (NR ,N ,X CN jS(,XPLS ,FPLS ,GPLS ,H ,ITNNO ,VRK ,IWRK)

(TENSRD stands for Tensor Default). TENSRD simply calls DFAULT followed by TENSOR. The user

must still supply values of NR, N, X, the routine to evaluate f(x) and its name in FCN, and the work

arrays WRK and IWRK.

5. Parameters and Default Values

In this section we describe the parameters for the software package. In the parameter list, the sym-

bol --, (-- or t---- follows each parameter. These symbols specify that the parame:er is an input, output

and input-output parameter, respectively. Most of the input parameters do not have to be supplied by the

user (see Sec. 4 and below); if they are not specified, the code gives them the default value that is

spc ilied below.

NR, : A positive integer specifying the row dimension of the matrices H and WRK in the user's calling

program. (H is used to store the Hessian matrix, WRK is used for workspace.) NR must be greater than

or ecqual to N. This provision allows the user to solve several problems with different values of N while

using the same user storage. If,VR <N, the software will set NR =,V and print a warning message.

,N-- A positive integer specifying the number of variables in the objective function. The value ofN

must be less than or equal to the value of NR. If N<, the program will abort. If N=l, the program will

print a warning message, unless MSG is set to 0.

-9-

X- : An N -vector containing the initivl approximation to the solution x.

FCN- : Thc name of a user supplied subroutine that returns in F the value of he objective function

f(x) at the current point X. FCN must be declared EXTERNAL in the user's calling piogrin and must

con lbrm to the usage

CALL FCN (N, X, F),

where N is the dimension of the problem, X is the current point, and F is the function value at the current

pcrt. FCN must not alter the values of N and X.

GRD-4 (Optional) : The name of a user supplied subroutine that returns in G the value of the gradient

Vf (.x) at the current point X. GRD must be declared EXTERNAL in the user's calling program and must

conform to the usage

CALL GRD (N, X, G),

where N is the dimension of the problem, X is the current point, and G is the gradient at the current

point. GRD must not alter the values of N and X.

f-SN-- (Optional) : The name of a user supplied subroutine that returns in H the value of the Hessian

V 2f (x) at the current point X. HSN must be declared EXTERNAL in the user's calling program and must

conform to the usage

CALL HSN (NR, N X, H),

wh,zre NR is the row dimension of H in the users program, N is the dimension of the problem, X is the

current point, and 1t is the Hessian at the current point. HSN must not alter the values of NR , N, or X.

TYPX--, (Optional) : An N-vector containing the scaling vector. The default value is TYPX--(ll I). If

the user supplies value,, for TYPX, then TYPX [1] should be the absolute value of the estimated m:ignitude

of x, at ilhe solut;'nn and/or during the ::" lution process. Fo- example, if it is anticipated that the range of

values for the iterates will be

Ix I C [Il lllll

-10-

X2 [-102, 101]

X3 E [-6x10 - 6 , 9x10 -6 1

then an appropriate choice would be TYPX = [1010, 103, 7x10- 6]. In cases like this where the magni-

tudes of the components of X differ substantially, it may be necessary to supply scaling information in

order for t- software to be successful and efficient. If a negative value is specified for TYPX [I], its

absolute value is used, while if 0 is specified, 1 is used.

FSCALE--4 (Optional) : A positive real number estimating the magnitude of f (x) near the solution x..

FSCALE is used in the gradient stopping condition given below. The default value is FSCALE=I. It may

be helpful to specify FSCALE when the units off (x) cause it always to be many orders of magnitude

different from 1. Iff (xo) is much greater thanf (x.), FSCALE should approximatef (x.), not f (xo). If a

negative value is specified for FSCALE, its absolute value is used, while if 0 is specified, I is used.

GRADTL-> (Optional) : A positive real number giving the tolerance at which the scaled gradient is con-

sidered close enough to zero to terminate the algorithm. The scaled gradient is a measure of the relative

change in f (x) in the direction xi. The gradient stopping test used in the software is

max{ IVf(x)i Imax(IxiI,TYPX[I]) }I GRADTLImax [I 171, FSCALE I

DFAULT returns the value GRADTL = macheps" 3 . (macheps is described in Section 6.) If a negative

value is specified for GRADTL, the default is used.

STEPTL-- (Optional) : A positive real number containing the tolerance at which the scaled step length

is considered close enough to zero to terminate the algorithm. The test used in the software is

max { m ((x .)i-(xC)i I ;< STEPTL
L max A(x)i JTYPX [I I I

where x. and x, arc the new and old iteratives, respectively. If the value of STEPTL is too large, the

software may terminate prematurely. DFAULT returns the value machcps2'3. If a negative value is

specified for.SLPTL, the default is used.

.11-

ITNLIM-4 (Optional) : A positive integer specifying the maximum number of iterations to be performed

before the program is terminated. DFAULT returns the value 100. If a nonpositive value is specified for

ITNLIM, the default is used.

STEPMX-* (Optional) : A positive real number containing the maximum scaled step size allowed in

each iteration. DFAULT returns the value

STEPMX = max{ I Ix01 12 103. 103

where x0 is the initial approximation provided by the user. STEPMX is used to prevent steps that would

cause the optimization function to overflow, to prevent the algorithm from leaving the area of interest in

parameter space, or to detect divergence in the algorithm. STEPMX should be chosen small enough to

prevent the first two of these occurrences but should be larger than any anticipated "reasonable" step. The

algorithm will halt and provide a diagnostic if it attempts to exceed STEPMX on five successive itera-

tions. If a nonpositive value is specified for STEPMX, the default is used.

IPR---> (Optional) : A positive integer containing the number of the output unit. DFAULT returns the

value 6 which is the standard FORTRAN output unit.

METHOD-- (Optional) : An integer flag designating which method to use.

METHOD = 0: Use the standard (quadratic model based) method.

METHOD = 1 : Use the tensor method.

DFAULT returns the value 1. If a value other than 0 or I is specified for METHOD, I is used.

GRDFLG---) (Optional) : An integer flag specifying whether a routine to calculate the analytic gradient is

provided by the user.

GRDFLG = 0: No analytic gradient supplied by user.

GRDFLG = I : Analytic gradient supplied by user (will be checked against finite difference gra-

dient).

GRDFLG = 2 : Analytic gradient supplied by user (will not be checked against finite difference

gradient).

-12-

When GRDFLG = 0, the gradient values are computed by finite differences. When GRDFLG = I or 2,

the name of the user supplied routine that evaluates Vf (x) must be supplied in GRD. When GRDFLG =

1, the program compares the value of the user's analytic gradient routine at xo with a finite difference

estimate, and aborts the program if the relative difference between any two components is greater than

0.01. DFAULT returns the value 0. If a value other than 0, 1, or 2 iS specified for GRDFLG, 0 is used.

HESFLG-4 (Optional) : An integer flag specifying whether a routine to calculate the analytic Hessian is

provided by the user.

HESFLG = 0: No analytic Hessian supplied by user.

HESFLG = I: Analytic Hessian supplied by user (will be checked against finite difference Hes-

sian).

HESFLG = 2 Analytic Hessian supplied by user (will not be checked against finite difference

Hessian).

When HESFLG = 0, the Hessian values are computed by finite differences. When HESFLG = I or 2, the

name of the user supplied routine that evaluates V2f (x) must be supplied in HSN. When HESFLG = 1,

the program compares the value of the user's analytic Hessian routine at X0 with a finite difference esti-

mate, and aborts the program if the relative difference between any two components is greater than 0.01.

DFAULT returns the value 0. If a value other than 0, 1, or 2 is specified for HESFLG, 0 is used.

NDIGIT--, (Optional) : An integer which estimates the number of accurate digits in the objective func-

tion f (x). DFAULT returns the value -log io(macheps). If a nonpositive value is specified, the default is

used.

MSG*---- (Optional) : An integer which upon entering the software package specifics the type of printed

output to be produced, and which upon exiting the software package specifies the termination condition.

The meaning of MSG upon input is :

0 No printed output will be produced.

I Print out the values of x, f (x), Vf (x) at the initial and final iterates, the total number of itera-

tions that were taken, and the reason the algorithm was terminated.

-13-

2 : Print out the values of x, f (x), Vf (x) at every iteration, the total number of iterations that

were taken, and the reason the algorithm was terminated.

DFAULT returns the value 1. If a value other than 0, 1, or 2 is specified forMSG, 1 is used.

The meaning of MSG upon exiting the software package is :

-1: The norm of the gradient at the final iterate was less than GRADTL.

-2: The length of the last step was less than STEPTL.

-3 : The last iteration failed to locate a lower point.

-4: The iteration limit has been exceeded.

-5: Five consecutive steps of length STEPMX have been taken.

-20: Nonpositive value of N was input; program aborted.

-21 : Possible coding error in analytic gradient, because analytic gradient at xO is not close

enough to finite difference approximation; program aborted. (This check can be overrid-

den by setting GRDFLG = 2.)

-22 : Possible coding error in analytic Hessian. because analytic Hessian at xO is not close

enough to finite difference approximation; program aborted. (This check can be overrid-

den by setting HESFLG = 2.)

XPLS--- : An N-vector containing the final iterate, which is the best approximation found to the minim-

izer off (x).

FPLS-- : A real number that contains the function value at the final iterate XPLS.

GPLS-- : An N-vector containing the gradient value at the final iterate XPLS.

H< -- : An array that is used to store the Hessian matrix V2f(x) at each iteration. The user needs to

declare this array to have dimension NR xNC, where NR is a parameter described at the start of this sec-

tion and obeys NR >N, and NC is any integer obeying NC >N. The Hessian matrix is stored in the first N

rows and columns of H. Upon exiting the software, H contains the Hessian value at the final iterate

XPLS.

-14-

ITNNO<-- : A positive integer containing the total number of iterations that were taken.

WRK---) : The name of an NR x8 double precision array used as workspace by the software package. It

must be declared in the user's calling program with these dimensions.

IWRK- : The name of an integer array used as workspace by the software package. It must be declared

in the user's calling program and have dimension NI, where NI is any integer obeying NI >_ N.

6. Implementation Details

The software package is coded in FORTRAN 77 using double precision. The user must declare all

parameters that are real variables to be double precision.

The software calculates the value of the machine epsilon, defined to be the smallest positive real

number macheps for which (1 + macheps) > I in double precision on that computer, in the subroutine

MCHEPS. On some computers, the returned value may be incorrect due to compiler optimizations. The

user may wish to check the computer value of macheps and, if it is incorrect, replace the code in the sub-

routine MCHEPS with the statement

EPS = correct value of machine epsilon.

Several components of the software package are taken from the UNCMIN unconstrained minimiza-

tion package of Schnabcl, Koontz and Weiss [1985]. These routines are: FORSLV and BAKSLV (for-

ward and backward triangular solve), FSTOFD and SNDOFD (first and second order finite difference

derivatives), GRDCHK and HESCHK (compare the finite difference gradient and Hessian to analytic gra-

dient and Hessian, respectively), LNSRCH (line search), OPTSTP (check stopping condition), and most

of OPTCHK (check input parameters).

-15-

7. Summary of Test Results

We have tested this software on the set of unconstrained optimization problems in Mord, Garbow

and Hillstrom [1981]. All of these problems except the Powell singular problem have V2f (x,) nonsingu-

lar. We created two sets of singular test problems V2f (x.) having rank n-I and n-2 respectively, by

modifying the nonsingular test problems of Mord, Garbow and Hillstrom [1981] as described in Schnabel

and Chow [1989]. The dimension of these problems ranges from 2 to 30.

The test results for the problems solved successfully by both methods are summarized in Table 7.1

below. The second and third columns are computed using the total of all the iterations, or all the function

evaluations, required by each method to solve all these problems. This is a reflection of the cost of the

entire test set. Table 7.1 shows that, on the average, the tensor method required about 28% to 34% fewer

iterations, and about 22% to 36% fewer function evaluations, to solve these problems. The number of

iterations would be an accurate indication of the time required by the code to solve a problem where the

number of variables n is not too small and function evaluation is not too expensive, since in this case the

cost per iteration of each method is nearly identical and is dominated by the factorization of an n xn sym-

metric matrix at each iteration. The number of function evaluations, which includes finite difference

derivatives, would be an accurate indication of the time required by the code to solve a problem where

function evaluation is expensive, as it is on many practical problems. Table 7.1 also shows that the

efficiency of the tensor method was rarely worse than the standard method, and usually better, on these

test problems.

Table 7.1 -- Comparison of Tensor and Standard Methods

Test Set Ins, Tensor Fn Evans, Tensor Tensor Better Tensor Worse TicTestSct 'Itns, Standard Fn Evalns, Standard
Nonsingular 0.714 0.779 32 4 10

Singular, rank n-I 0.658 0.638 39 2 10
Singular, rank n-2 0.674 0.685 31 5 17

-16-

In addition, Table 7.2 shows that the tensor method solved 18 problems that the standard method

did not solve, while the standard method solved 3 problems that the tensor method did not solve, with the

tensor method !,aving a greater advantage on the singular problems than on the nonsingular problems.

These results indicate that the tensor method is likely to be more efficient than the standard method

in solving nonsingular and singular unconstrained optimization problems, and that it may solve a wider

range of problems. They also indicate that for any particular problem, it may be advantageous to have
both methods available.

Table 7.2 --Number of Test Problems Solved by One Method Only

Test Set Solved by Tensor Method Only Solved by Standard Method Only
Nonsingular 6 1

Singular, rank n-1 5 0
Singular, rank n -2 7 2

-17-

8. References

T. Chow [1989], "Derivative and secant tensor methods for unconstrained optimization", Ph.D. Thesis,
Department of Computer Science, University of Colorado at Boulder.

J. E. Dennis Jr. and R. B. Schnabel (19831, Numerical Methods for Nonlinear Equations and Uncon-
strained Optimization, Prentice-Hall, Englewood Cliffs, New Jersey.

J. J. Mord B. S. Garbow, and K. E. Hillstrom [19811, "Testing unconstrained optimization software",
ACM Transactions on Mathematical Software 7, pp. 17-41.

R. B. Schnabel and T. Chow [1989], "Tensor methods for unconstrained optimization using second
derivatives", Technical Report CU-CS-439-89, Department of Computer Science, University of Colorado
at Boulder, to appear in SIAM Journal on Optimization.

R. B. Schnabel and E. Eskow [1990], "A new modified Cholesky factorization", SIAM Journal on
Scientific and Statistical Computing 11, pp. 1136-1158.

R. B. Schnabel, J. E. Koontz, and B. E. Weiss [1985], "A modular system of algorithms of unconstrained
minimization", ACM Transactions on Mathematical Software 11, pp. 419-440.

MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

REPOT D CUM NTATON AGEForm Approved
REPOT D CUMETATON PGE0MB No. 0704-0188

'~.o 'oc"q * i~on 7t -c1rmC om %. -itimatt !c j.e'aqe - our oet -%oor~at mci oim tre t,,e 'or e,.enmsruc-jom, satarmrnq e..1' Tong laawci
ptnnq'a .'.'nT3-' .e atra n"#a. and cor'o et~nq and re-L-~nq 'r'e :olec-.?n of tolrmatton Sena zomments f.rasRq ms ou.rcen eitgn,.te or in, otmef asoen at

clte!,an ;t nt,r &nuon. 'ci .0 q s~qqeit on% to, eaticnq :r's ourcen !a w~a rh~qto" -eaaacua'.e, Ser'.ces. Direc~orate 'or .i'or,,'.uon Ocaeratoni and Aeoorls. 12 5 .etterson
0aw -g r-v e '204 -ington A .%222024302. a nd t ceo :# Mnqerment an Sdqet' Paoer'orx Rd Cif oProjec-(0704-0 1,8). Waisn-to,. ZC :0503.

1. AGENCY USE ONLY (Leave Wjank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

1 012/31
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

ASoftware Package for Unconstrained Optimization
Using Tensor Methods7)0f9/

6. _____________________ AUTHOR(S)-.k- oA'
Ta-Tung Chow, Elizabeth Eskow, and Robert B. Schnabel

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) 8. PERFORMING ORGANIZATION

Office of Contracts and Grants REPORT NUMBER

Armory 206, Campus Box B-19
University of Colorado at Boulder
Boulder, CO 80309

9. SPONSORING/ MONITORING AGENCY NAME(S) AND AOORESS(ES) 10. SPONSORING/ MONITORING

U. S. Army Research Office AEC EOTNME

P. 0. Box 12211
Research Triangle Park, NC 27709-2211 AJ10) L 2.S I'/q?

11. SUPPLEMENTARY NOTES

The view, opin-ions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This paper describes a software package for finding the unconstrained minimizer of a nonlinear function
of n variables. T'he package is intended for problems where n is not too large, say n <~ 100, so that the cost
of storing one nxn matrix, and factoring it at each iteration, is acceptable. The software allows the uscr to
choose between a recently developed "tensor method" for unconstrained optimization, and an analogous
standard method based upon a quadratic model. The tensor method bases each iteration upon a specially
constructed fourth order model of the objective function that is not significantly more expensive to form,
store, or solve than the standard quadratic model. In our experience, the tensor method requires
significantly fewer iterations and function evaluations to solve most unconstrained optimization problems
than standard methods based upon quadratic models, and also solves a somewhat wider range of prob-
lems. For these reasons, it may be a useful addition to numerical software libraries.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Unconstrained optimization, tensor methods, software package 21
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT j OF THIS PAGE j OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED I UNCLASSIFIED UL
NSN 7540-43.-280-5500 Stanldard Formn 298 (Rey 2-89)

P,"UtWnd 0V -&.4% %to 139'S
298.102

